Monotonicity of the Number of Self-Avoiding Walks

George L. O'Brien ${ }^{1}$

Received May 31, 1989; revision received December 11, 1989

Abstract

It is shown that the number c_{n} of self-avoiding walks of length n in \mathbb{Z}^{d} is an increasing function of n.

KEY WORDS: Self-avoiding walks.

1. INTRODUCTION

A self-avoiding walk (SAW) of length n in $\mathbb{Z}^{d}(d \geqslant 2)$ is an ordered set $W=\left(x_{0}=0, x_{1}, \ldots, x_{n}\right)$ of distinct vertices in \mathbb{Z}^{d} such that

$$
\begin{equation*}
\left|x_{k}-x_{k-1}\right|=1, \quad k=1,2, \ldots, n \tag{1.1}
\end{equation*}
$$

The idea behind this notion is that a particle starts at 0 and then visits the vertices $x_{1}, x_{2}, \ldots, x_{n}$ in succession. Thus, it cannot visit a vertex more than once. We can equally well describe W by listing its edges (x_{0}, x_{1}), $\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right)$ which together with the vertices form a directed graph.

Let \mathscr{S}_{n} denote the set of SAWs of length n (we treat d as fixed) and let $c_{n}=\left|\mathscr{S}_{n}\right|$, the cardinality of \mathscr{S}_{n}. It is difficult to calculate c_{n} even for fairly moderate n, but a number of bounds and asymptotic results about c_{n} are known.

Hammersley and Welsh ${ }^{(1)}$ proved that there are constants $\mu>1$ and $\alpha>0$ depending on d such that

$$
\begin{equation*}
\mu^{n} \leqslant c_{n} \leqslant \mu^{n} \exp \left(\alpha n^{1 / 2}\right) \tag{1.2}
\end{equation*}
$$

Kesten ${ }^{(2)}$ proved that

$$
\begin{equation*}
\left|c_{n+2} / c_{n}-\mu^{2}\right| \leqslant A n^{-1 / 3} \tag{1.3}
\end{equation*}
$$

[^0]for some constant A. Both papers also contain several related results. There has been little mathematically rigorous progress since Kesten's paper. An interesting exception is the paper by Slade. ${ }^{(4)}$ One obvious question is whether (1.3) can be extended to a result of the form
\[

$$
\begin{equation*}
c_{n+1} / c_{n} \rightarrow \mu \quad \text { (at some specified rate) } \tag{1.4}
\end{equation*}
$$

\]

Many authors have worked on Monte Carlo and related computer-intensive methods to estimate μ and other important quantities arising in connection with SAWs. An extensive list of papers of this type is given by Madras and Sokal. ${ }^{(3)}$ The interest in these results is related to the idea that SAWs can be used as models for linear polymer molecules, as discussed in the review paper by Whittington ${ }^{(5)}$ for example. The large number of papers reflects the fact that the structure of SAWs is so complex and c_{n} grows so fast that even computer studies are difficult.

Using (1.2), (1.3), and the elementary inequalities $c_{n} \geqslant d^{n}$ and $c_{n+1} \leqslant$ $(2 d-1) c_{n}$, we deduce that

$$
\begin{equation*}
c_{n} \leqslant \frac{4}{3} \mu^{-2} c_{n+2} \leqslant \frac{4}{3} d^{-2}(2 d-1) c_{n+1} \leqslant c_{n+1} \tag{1.5}
\end{equation*}
$$

for n sufficiently large. Also, it is easy to show that $c_{n} \leqslant c_{n+2}$ for all n. Remarkably, it has not been shown that $c_{n} \leqslant c_{n+1}$ holds for all n. The main result of this note fills this gap. It is to be hoped that the methodology used in the proof of the following theorem can be modified to help obtain other results about SAWs.

Theorem. For $d \geqslant 2$ and all $n, c_{n} \leqslant c_{n+1}$.
The basic idea of the proof is to construct a one-to-one function Φ from $\mathscr{S}_{n} \rightarrow \mathscr{S}_{n+1}$. The part of the proof which does not depend on d is given in Section 2. The more complex second part is given in Section 3 for the planar case $d=2$, and in Section 4 for the higher-dimensional case $d>2$.

The following notational conventions are useful. A segment $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ of a SAW W is the collection $\left\{\left(y_{1}, y_{2}\right),\left(y_{2}, y_{3}\right), \ldots\right.$, $\left.\left(y_{k-1}, y_{k}\right)\right\}$ of successive edges of W. For many purposes the directed nature of the graph W is unimportant. It is often convenient to write "the edge $\left[y_{1}, y_{2}\right]$ " as shorthand for the passage " $\left(y_{1}, y_{2}\right)$ or $\left(y_{2}, y_{1}\right)$, whichever is an edge of W." The expression "the segment $\left[y_{1}, \ldots, y_{k}\right]$ " has a similar meaning. If a statement relates to an endpoint of W by mentioning x_{1} or x_{n-1}, say, then the order does matter and is written with more care.

2. PROOF OF THE THEOREM: FIRST PART

The unit vectors in \mathbb{Z}^{d} are the $2 d$ vectors of the form $\left(\xi_{1}, \ldots, \xi_{d}\right)$ such that one of the ξ_{j} is 1 or -1 and the others are all 0 . We denote them by $u_{1}, u_{2}, \ldots, u_{2 d}$, where u_{i} has a 1 in the i th component for $i \leqslant d$ and a -1 in the $(i-d)$ th component for $i>d$. In particular, $u_{i}+u_{i+d}=0$ for $1 \leqslant i \leqslant d$. Let $U=\left\{u_{1}, \ldots, u_{2 d}\right\}$.

A rectangle in \mathbb{Z}^{d} is a set

$$
\begin{equation*}
R:=\prod_{j=1}^{d}\left\{a_{j}, a_{j}+1, \ldots, b_{j}\right\} \tag{2.1}
\end{equation*}
$$

where a_{j} and b_{j} are integers with $a_{j} \leqslant b_{j}$. The faces of such a rectangle are the $2 d$ sets

$$
\begin{equation*}
F_{i}:=\prod_{j=1}^{d} H_{j}, \quad i=1,2, \ldots, 2 d \tag{2.2}
\end{equation*}
$$

where $H_{j}=\left\{a_{j}, a_{j}+1, \ldots, b_{j}\right\}$ for $j \neq\{i, i-d\}$, and $H_{i}=\left\{b_{i}\right\}$ if $i \leqslant d$ and $H_{i-d}=\left\{a_{i}\right\}$ if $i>d$. Suppose $a_{i}<b_{i}$ for all $i \leqslant d$; then u_{i} is orthogonal to F_{i} for all i and in fact points from F_{i} toward the outside of R; we call u_{i} the outward normal (unit) vector for F_{i} and u_{i+d} or u_{i-d}, as appropriate, the inward normal (unit) vector. All the other u_{j} in U are parallel to F_{i}.

For each $i \leqslant 2 d$ we define a partial order \leqslant_{i} on \mathbb{Z}^{d} as follows: for $i \leqslant d$, $\left(\xi_{1}, \ldots, \xi_{d}\right) \leqslant i\left(\eta_{1}, \ldots, \eta_{d}\right)$ iff $\xi_{j} \leqslant \eta_{j}$ for all j, and for $d<i \leqslant 2 d,\left(\xi_{1}, \ldots, \xi_{d}\right) \leqslant_{i}$ $\left(\eta_{1}, \ldots, \eta_{d}\right)$ iff $\xi_{j} \leqslant \eta_{j}$ for all $j \neq i-d$ and $\xi_{i-d} \geqslant \eta_{i-d}$. A unit vector u is upward (downward) with respect to \leqslant_{i} if $0 \leqslant_{i} u$ (respectively $u \leqslant_{i} 0$).

Now let $W=\left(0, x_{1}, \ldots, x_{n}\right) \in \mathscr{S}_{n}$. The adjacent vertices (in W) to x_{k} are x_{k-1} and x_{k+1} (or only one of these if $k=0$ or $k=n$). We let R be the least rectangle containing W. There is at least one vertex of W in each face F_{i} of R. The vertex $\left(\xi_{1}, \ldots, \xi_{d}\right)$ of W which is lexicographically largest among all vertices in $W \cap F_{i}$ is called the pivot point of W for F_{i}. It is clear that the pivot point for F_{i} is a maximal vertex relative to \leqslant_{i} among all vertices of W. Note that the pivot point for F_{i} is in F_{i}, but may also be in F_{j} for some $j \neq i$. We will define $W^{\prime}:=\left(0, v_{1}, \ldots, v_{n+1}\right)=\Phi(W)$ in a manner which depends on which of the following three disjoint subclasses of \mathscr{S}_{n} contains W :

$$
\begin{aligned}
& \mathscr{J}_{1}:=\left\{W \in \mathscr{S}_{n}: \text { for some } i, \text { either } x_{n} \in F_{i} \text { or } x_{n}+u_{i} \in F_{i} \backslash W\right\} \\
& \mathscr{I}_{2}:=\left\{W \in \mathscr{S}_{n} \backslash \mathscr{J}_{1}: \text { for some } i, \text { either } 0 \in F_{i} \text { or } u_{i} \in F_{i} \backslash W\right\} \\
& \mathscr{J}_{3}:=\mathscr{S}_{n} \backslash\left(\mathscr{I}_{1} \cup \mathscr{J}_{2}\right)
\end{aligned}
$$

If $W \in \mathscr{A}_{1}$, choose i such that $x_{n} \in F_{i}$ or $x_{n}+u_{i} \in F_{i} \backslash W$ and define $W^{\prime}=$ $\left(0, x_{1}, \ldots, x_{n}, x_{n}+u_{i}\right)$. If $W \in \mathscr{F}_{2}$, choose i such that $0 \in F_{i}$ or $u_{i} \in F_{i} \backslash W$ and
define $W^{\prime}=\left(0,-u_{i}, x_{1}-u_{i}, \ldots, x_{n}-u_{i}\right)$. In words, W^{\prime} is formed from W by appending a vertex before 0 and then translating the graph to place the new vertex at 0 . If $W \in \mathscr{I}_{3}$, we construct W^{\prime} by first perturbing W near a pivot point (details to be given later) to obtain a SAW $W^{\prime \prime}=$ $\left(0, v_{1}, \ldots, v_{n+2}\right) \in \mathscr{S}_{n+2}$ and then deleting the last vertex v_{n+2} and edge from $W^{\prime \prime}$.

Let R^{\prime} be the least rectangle containing W^{\prime}, and let $F_{i}^{\prime}, i \leqslant 2 d$, be its faces and $p_{i}^{\prime}, i \leqslant 2 d$, be the pivot point of W^{\prime} for F_{i}^{\prime}. Although we have not yet given the details of the perturbation for $W \in \mathscr{F}_{3}$, we temporarily take it for granted that the following conditions hold for $W \in \mathscr{F}_{3}$:

$$
\begin{gather*}
R \subset R^{\prime} \tag{2.3}\\
x_{n} \notin W^{\prime} \tag{2.4}
\end{gather*}
$$

and

$$
\begin{equation*}
v_{n+1}=x_{n-1} \in W \tag{2.5}
\end{equation*}
$$

As a first step toward showing that Φ is one-to-one, we have the following result.

Lemma 1. Given $W^{\prime}=\Phi(W)$ for some $W \in \mathscr{S}_{n}$, we can determine which of $\mathscr{J}_{1}, \mathscr{J}_{2}$, and \mathscr{J}_{3} contains W.

Proof. If $W \in \mathscr{J}_{1}$, then, for some i,

$$
\begin{equation*}
v_{n+1} \in F_{i}^{\prime} \quad \text { and } \quad v_{n} \notin F_{i}^{\prime} \tag{2.6}
\end{equation*}
$$

If $W \in \mathscr{F}_{2}$, then there is no i for which (2.6) holds, but, for some i,

$$
\begin{equation*}
0 \in F_{i}^{\prime} \quad \text { and } \quad v_{1} \notin F_{i}^{\prime} \tag{2.7}
\end{equation*}
$$

Now suppose $W \in \mathscr{J}_{3}$. If $x_{n-1}=v_{n+1} \in F_{i}^{\prime}$ for some i (necessarily unique), then $x_{n}-x_{n-1}=-u_{i}$. By (2.3) and (2.4), $v_{n}-v_{n+1} \neq-u_{i}$, so $v_{n} \in F_{i}^{\prime}$ also, contrary to (2.6). Thus, (2.6) holds if and only if $W \in \mathscr{I}_{1}$. For $W \in \mathscr{J}_{3}$, it is also clear that $0 \notin F_{i}^{\prime}$ by (2.3) and the definition of \mathscr{J}_{2}. Thus, if (2.6) fails, then (2.7) holds if and only if $W \in \mathscr{J}_{2}$.

If $W \in \mathscr{J}_{1}\left(W \in \mathscr{I}_{2}\right)$, one can recover W from W^{\prime} by deleting the final vertex and edge (the first vertex and edge and translating by $-v_{1}$, respectively). Our remaining task is to define Φ on \mathscr{J}_{3} in such a way that this recovery process can be performed on \mathscr{J}_{3} also.

The details of the definition of Φ on \mathscr{F}_{3} are somewhat different in the cases $d=2$ and $d>2$. The basic idea is the same, however, and it is useful to prepare for the details by giving an outline of the construction. We assume henceforth that $W \in \mathscr{F}_{3}$.

A pivot point p_{i} of W is said to be an upwardly mobile pivot point (UMPP) for F_{i} if W satisfies certain conditions near p_{i}. If p_{i} is a UMPP, then there are at least $2 d-1$ possible perturbations (in an upward direction relative to \leqslant_{i}) near p_{i} such that the pivot point p_{i}^{\prime} of the perturbed SAW is also a UMPP for F_{i}^{\prime}. If p_{i} is not upwardly mobile, there is at least one possible such perturbation. Then W^{\prime} is constructed from W by choosing a different perturbation near some p_{i} according to the direction of the edge (x_{n-1}, x_{n}) to get $W^{\prime \prime}$ and then deleting that edge from $W^{\prime \prime}$ to get W^{\prime}. If the choice of perturbation is made judiciously, its location can be recovered by locating the largest i (in some ordering) for which p_{i}^{\prime} is a UMPP, and x_{n} and W can then be recovered by determining exactly which perturbation was used.

3. COMPLETION OF THE PROOF IN THE PLANAR CASE

When $d=2$, we can think of F_{1}, \ldots, F_{4} as the right, top, left, and bottom faces, respectively, of R. The pivot points are the rightmost or top vertices of W for their faces. Since $W \in \mathscr{F}_{3},\left[p_{4}-r_{0} u_{1}+u_{2}, p_{4}-r_{0} u_{1}, p_{4}-\right.$ $\left.\left(r_{0}-1\right) u_{1}, \ldots, p_{4}, p_{4}+u_{2}\right]$ is a segment of W for some $r_{0}>0$.

Definition. We call p_{4} a UMPP for F_{4} if $W \cap\left\{p_{4}+u_{2}+r u_{1}\right.$: $r>0\}=\varnothing$ and one of the following five disjoint conditions also holds (see Fig. 1):
(A) $r_{0}>1$.
(B) $r_{0}=1,\left[p_{4}-2 u_{1}+u_{2}, p_{4}-u_{1}+u_{2}\right]$, and $\left[p_{4}+u_{2}, p_{4}+2 u_{2}\right]$ are edges of W and
$W \cap\left\{p_{4}-r u_{1}: r>1\right\}=W \cap\left\{p_{4}+2 u_{2}+r u_{1}: r>0\right\}=\varnothing$
(C) $r_{0}=1$ and $W \cap\left\{p_{4}+u_{2}-r u_{1}: r>1\right\}=\varnothing$.
(D) $r_{0}=1$, (B) fails, $W \cap\left\{p_{4}-r u_{1}: r>1\right\}=\varnothing$, and $p_{4}+u_{2}-$ $r u_{1} \in W$ for some $r>2$.
(E) $r_{0}=1$ and for some $r_{1}>1, \quad p_{4}-r_{1} u_{1} \in W$, and $W \cap$ $\left\{p_{4}+u_{2}-r u_{1}: r>r_{1}\right\}=\varnothing$.

The pivot point p_{1} for F_{1} is said to be a UMPP if $W \cap\left\{p_{1}-u_{1}+r u_{2}\right.$: $r>0\}=\varnothing$.

The pivot points p_{4}^{\prime} and p_{1}^{\prime} are called UMPPs if the corresponding statements hold for W^{\prime}.

The Three Perturbations. We next construct three SAWs in \mathscr{S}_{n+2} by perturbing W near one of the pivot points p_{4}, p_{1}, or p_{2}. There are three cases.

Case 1. p_{4} is a UMPP for F_{4}. The three perturbations are:
(i) Replace the segment $\left[p_{4}-r_{0} u_{1}, \ldots, p_{4}\right]$ by the segment $\left[p_{4}-r_{0} u_{1}, p_{4}-r_{0} u_{1}-u_{2}, p_{4}-\left(r_{0}-1\right) u_{1}-u_{2}, \ldots, p_{4}-u_{2}, p_{4}\right]$
(ii) Replace $\left[p_{4}, p_{4}+u_{2}\right]$ by

$$
\left[p_{4}, p_{4}+u_{1}, p_{4}+u_{2}+u_{1}, p_{4}+u_{2}\right]
$$

(iii) If (A) holds, replace $\left[p_{4}-u_{1}, p_{4}\right]$ by

$$
\left[p_{4}-u_{1}, p_{4}-u_{2}-u_{1}, p_{4}-u_{2}, p_{4}\right]
$$

If (B) holds, replace $\left[p_{4}, p_{4}+u_{2}, p_{4}+2 u_{2}\right]$ by

$$
\left[p_{4}, p_{4}+u_{1}, p_{4}+u_{1}+u_{2}, p_{4}+u_{1}+2 u_{2}, p_{4}+2 u_{2}\right]
$$

(A)

(B)

(C)

(D)

(E)

$$
\begin{array}{rll}
\text { Key: } & -- \text { Indicates } F_{4} \\
& \rightarrow \text { Indicates no vertex beyond arrow }
\end{array}
$$

Fig. 1. Upwardly mobile pivot points for F_{4}.

If (C) holds, replace $\left[p_{4}-u_{1}, p_{4}-u_{1}+u_{2}\right]$ by

$$
\left[p_{4}-u_{1}, p_{4}-2 u_{1}, p_{4}-2 u_{1}+u_{2}, p_{4}-u_{1}+u_{2}\right]
$$

If (D) holds, and q is the leftmost point of $W \cap\left\{p_{4}+u_{2}-r u_{1}: r>2\right\}$, replace $\left[q, q+u_{1}\right]$ by

$$
\left[q, q-u_{2}, q+u_{1}-u_{2}, q+u_{1}\right]
$$

If (E) holds, replace $\left[p_{4}-r_{1} u_{1}, p_{4}-r_{1} u_{1}+u_{2}\right]$ by

$$
\left[p_{4}-r_{1} u_{1}, p_{4}-\left(r_{1}+1\right) u_{1}, p_{4}-\left(r_{1}+1\right) u_{1}+u_{2}, p_{4}-r_{1} u_{1}+u_{2}\right]
$$

Case 2. p_{4} is not a UMPP for F_{4} and p_{1} is a UMPP for F_{1}. The three perturbations are:
(iv) Replace $\left[p_{1}, p_{1}-u_{2}\right]$ by $\left[p_{1}, p_{1}+u_{1}, p_{1}-u_{2}+u_{1}, p_{1}-u_{2}\right]$.
(v) Replace $\left[p_{1}, p_{1}-u_{1}\right]$ by $\left[p_{1}, p_{1}+u_{2}, p_{1}+u_{2}-u_{1}, p_{1}-u_{1}\right]$.
(vi) Same as (i).

Case 3. p_{4} is not a UMPP for F_{4}, and p_{1} is not a UMPP for F_{1}. The three perturbations are:
(vii) Replace $\left[p_{2}, p_{2}-u_{1}\right]$ by $\left[p_{2}, p_{2}+u_{2}, p_{2}-u_{1}+u_{2}, p_{2}-u_{1}\right]$.
(viii) Same as (iv).
(ix) Same as (i).

We note that each of the above perturbations yields a SAW in \mathscr{S}_{n+2}.
Definition of $\boldsymbol{\Phi}(\boldsymbol{W})$ for $W \in \mathscr{J}_{3}$. Given W, we first note which of the above three cases applies and then construct $W^{\prime \prime} \in \mathscr{S}_{n+2}$ by perturbing W in one of the three indicated ways, subject to the following two restrictions: first, if $W \in \mathscr{S}_{n}$ and $W_{1} \in \mathscr{S}_{n}$ are the same up to but not including their final edges, then different perturbations are applied to W and W_{1}; and second, if $x_{n-1} \in F_{i}$ for some necessarily unique i, then a perturbation of type (i), (vi), or (ix) is used, while if p_{4} is a UMPP satisfying (B) and $x_{n}=$ $p_{4}+2 u_{2}$, then a perturbation of type (ii) is used. If the resulting SAW in \mathscr{S}_{n+2} is $W^{\prime \prime}=\left(0, v_{1}, v_{2}, \ldots, v_{n+2}\right)$, we define $W^{\prime}=\Phi(W)=\left(0, v_{1}, \ldots, v_{n+1}\right)$.

We note that (2.3) and (2.4) hold in all cases. The second restriction on the choice of perturbation guarantees that the edge $\left(x_{n-1}, x_{n}\right)$ is in $W^{\prime \prime}$ and hence that $v_{n+1}=x_{n-1}$. Thus, (2.5) also holds.

The One-to-Oneness of Φ on \mathscr{F}_{3}. Suppose first that the perturbation used to construct $W^{\prime \prime}$ from W is of type (i), (ii), (iii), (vi), or (ix). It is tedious but straightforward to see that the pivot point p_{4}^{\prime} is a UMPP
for F_{4}^{\prime} in this case. For example, if p_{4} is a UMPP satisfying (D) for F_{4}, the perturbation of type (iii) makes p_{4}^{\prime} a UMPP satisfying (E) for F_{4}^{\prime}. Next suppose that the perturbation is of type (iv), (v), or (viii). Then p_{1}^{\prime} is a UMPP for F_{1}^{\prime}. Also, these perturbations are only used if p_{4} is not a UMPP for F_{4}, which implies in particular that if $p_{4} \in F_{1}$, then $\left[p_{4}-u_{1}+u_{2}\right.$, $\left.p_{4}-u_{1}, p_{4}, p_{4}+u_{2}, p_{4}+2 u_{2}\right]$ is a segment of W. Hence $p_{4}^{\prime}=p_{4}$ and consequently is not a UMPP for F_{4}^{\prime}. Finally, suppose p_{4} is not a UMPP for F_{4}; p_{1} is not a UMPP for F_{1}; and the perturbation is of type (vii). It is clear that $p_{4}^{\prime}=p_{4}$ is not a UMPP for F_{4}^{\prime} and $p_{1}^{\prime}=p_{1}$ is not a UMPP for F_{1}^{\prime}.

Thus, we can determine from W^{\prime} which of these three situations applies. An examination of the configurations that result from each type of perturbation shows that they are distinguishable in terms of their nature near p_{4}^{\prime} and p_{1}^{\prime}. Hence $W^{*}=\left(0, x_{1}, \ldots, x_{n-1}\right)$ can be recovered from W^{\prime}. We can then recover W by using the association between the perturbations and the possible edges $\left(x_{n-1}, x_{n}\right)$.

4. COMPLETION OF THE PROOF IN HIGHER DIMENSIONS

Let $W \in \mathscr{F}_{3}$. When $d>2$, we can use a much simpler definition of UMPP and a smaller variety of perturbations. As before, let p_{i} be the pivot point for $F_{i}, i \leqslant 2 d$. We recall that if y is adjacent to p_{i}, then $y \leqslant_{i} p_{i}$.

Definition. We say p_{i} is a UMPP for F_{i} if $s \in W$ and $y \leqslant_{i} s$, where y is adjacent to p_{i}, together imply that $s=y$ or $s=p_{i}$.

The 2d-1 Perturbations. A type I perturbation on F_{i} is the replacement of $\left[y, p_{i}\right]$ by $\left[y, y+u, p_{i}+u, p_{i}\right]$, where y is adjacent to p_{i} in W, u is an upward unit vector relative to \leqslant_{i}, and $u \neq p_{i}-y$. A type II perturbation on F_{i} is the replacement of $\left[y, p_{i}, z\right]$ by $\left[y, y+u, p_{i}+u\right.$, $z+u, z]$, where y and z are adjacent to p_{i} in W, u is upward relative to \leqslant_{i}, $u \neq p_{i}-y$, and $u \neq p_{i}-z$. A type I^{*} perturbation on F_{i} is a type I perturbation on F_{i} for which $u=u_{i}$. In all cases, u is called the perturbing unit vector and, if $W^{\prime \prime}$ is a SAW obtained by perturbing W, the vertices in $W^{\prime \prime} \backslash W$ are called the vertices added to W.

Since $p_{i} \in F_{i}$, at least one of its adjacent vertices is in F_{i}, so at least one type I* perturbation on F_{i} is possible in the sense that it gives rise to a SAW in \mathscr{S}_{n+2}. If p_{i} is a UMPP, then all $2(d-1)$ type I and $d-2$ type II perturbations are possible in this sense. Since $d \geqslant 3$, this provides at least $2 d-1$ perturbations. (The nonexistence of type II perturbations when $d=2$ is the reason the planar case requires a separate argument.)

As in the planar situation, we choose our $2 d-1$ perturbations according to which of three cases applies. If $p_{2 d}$ is a UMPP for $F_{2 d}$, choose $2 d-2$ type I perturbations and one type II perturbation, all on $F_{2 d}$. If $p_{2 d}$ is not
a UMPP for $F_{2 d}$, but p_{i} is a UMPP for F_{i} for some $i<2 d$, take the largest such i and choose $2 d-2$ type I perturbations on F_{i} and one type I* perturbation on $F_{2 d}$. If no p_{i} is a UMPP for F_{i}, choose one type I* perturbation on each of $2 d-1$ faces.

Definition of $\Phi(W)$. Given $W \in \mathscr{F}_{3}$, we define $W^{\prime \prime}=$ $\left(0, v_{1}, \ldots, v_{n+2}\right)$ and $W^{\prime}=\Phi(W)=\left(0, v_{1}, \ldots, v_{n+1}\right)$ as in the planar case, except that the second restriction becomes: if $x_{n-1} \in F_{i}$ for some i, then a type I^{*} perturbation is used.

As before, (2.3)-(2.5) hold.

The One-to-Oneness of Φ on \mathscr{J}_{3}

Lemma 2. Suppose that the perturbation used in the construction of $W^{\prime \prime}$ is on F_{j}. Then p_{j}^{\prime} is a UMPP for F_{j}^{\prime} and $p_{j}^{\prime} \notin W$.

Proof. If p_{j} is a UMPP for F_{j}, the conclusion is clear, whereas if it is not, then the perturbation is of type I^{*} and the conclusion again follows.

If there were no interaction between faces, we could locate the perturbation by finding the largest j for which F_{j}^{\prime} has a UMPP. However, if p_{j} is near the edge of F_{j}, a perturbation on F_{j} may give rise to a UMPP for F_{i}^{\prime} where $i>j$ in one of two ways: first, it is possible that $p_{i}^{\prime} \neq p_{i}$, and second, it is possible that $p_{i}^{\prime}=p_{i}$, but that the adjacent vertices to p_{i}^{\prime} in W^{\prime} are different from the adjacent vertices to p_{i} in W. These complications, which we managed to avoid in the planar case, are dealt with in the following lemmas.

Lemma 3. Let the perturbation be on F_{j} and let $i \geqslant j$ be such that $p_{i}^{\prime}\left(=v_{k}\right.$, say) is a UMPP for F_{i}^{\prime} and $p_{i}^{\prime} \notin W$. Then exactly one of the following three statements holds:
($\left.\mathbf{S}_{1}\right) \quad v_{k}-v_{k-1}=v_{k+1}-v_{k+2}$ and, if $i>d$ and $v_{k}-v_{k-1}=u_{i}$, then $F_{i}^{\prime} \cap W^{\prime}=\left\{v_{k}, v_{k+1}\right\}$.
(S_{2}) $\quad v_{k}-v_{k+1}=v_{k-1}-v_{k-2}$ and, if $i>d$ and $v_{k}-v_{k+1}=u_{i}$, then $F_{i}^{\prime} \cap W^{\prime}=\left\{v_{k}, v_{k-1}\right\}$.
$\left(\mathrm{S}_{3}\right) \quad v_{k+2}-v_{k+1}=v_{k-2}-v_{k-1}$ and $v_{k}+v_{k+2}+v_{k-1} \notin W^{\prime}$.
The first two statements can only hold for type I perturbations and the third only for type II perturbations. In the three cases, the perturbation replaces $\left[v_{k-1}, v_{k+2}\right]$ by $\left[v_{k-1}, \ldots, v_{k+2}\right],\left[v_{k-2}, v_{k+1}\right]$ by $\left[v_{k-2}, \ldots, v_{k+1}\right]$, and $\left[v_{k-2}, v_{k}+v_{k+2}-v_{k+1}, v_{k+2}\right]$ by $\left[v_{k-2}, \ldots, v_{k+2}\right]$, respectively.

Proof. If the perturbation is of type I and the added vertices are v_{k} and v_{k+1}, then the first equation in (S_{1}) holds. If $i>d$ and $v_{k}-v_{k-1}=u_{i}$,
then the perturbation is of type I^{*} on F_{i} and $i=j$, since u_{i} is upward only with respect to \leqslant_{i}; but then $F_{i}^{\prime} \cap W^{\prime}=\left\{v_{k}, v_{k+1}\right\}$. Statement $\left(\mathrm{S}_{2}\right)$ similarly follows if the added vertices are v_{k} and v_{k-1}. If the perturbation is of type II, which implies $i=j=2 d$, then v_{k}, v_{k-1}, and v_{k+1} are the three added vertices and (S_{3}) follows. The equations in $\left(S_{1}\right)$ and $\left(S_{2}\right)$ together imply $v_{k+2}=v_{k-2}$, so they cannot both hold. Similarly, $\left(\mathrm{S}_{3}\right)$ is inconsistent with either $\left(\mathrm{S}_{1}\right)$ or $\left(\mathrm{S}_{2}\right)$. The final statement is now obvious.

Lemma 4. Suppose the perturbation is on F_{j}. Let $i \geqslant j$ be such that $p_{i}^{\prime}=v_{k}$ is a UMPP for F_{i}^{\prime} and $p_{i}^{\prime} \in W$. Then none of $\left(\mathrm{S}_{1}\right),\left(\mathrm{S}_{2}\right)$, or $\left(\mathrm{S}_{3}\right)$ holds.

Proof. By Lemma 2, $i>j$, so $j<2 d$. Therefore, the perturbation is of type I. Since $p_{i}^{\prime} \in F_{i}$, it must in fact be the pivot point for F_{i}, that is, $p_{i}^{\prime}=p_{i}$. On the other hand, p_{i} cannot be a UMPP for F_{i}, for if it were, the perturbation would be on F_{i} rather than F_{j}. The only situation consistent with p_{i} being a UMPP for F_{i}^{\prime} but not for F_{i} is that one of the adjacent vertices of p_{i} in W^{\prime}, say v_{k+1}, is not in W. The perturbing vector u must then satisfy

$$
\begin{equation*}
u=v_{k+1}-v_{k}=v_{k+2}-v_{k+3} \tag{4.1}
\end{equation*}
$$

and the two added vertices must be v_{k+1} and v_{k+2}. Since (4.1) and (S_{1}) together imply $v_{k+3}=v_{k-1},\left(\mathrm{~S}_{1}\right)$ fails. Since $v_{k+3}=v_{k}+v_{k+2}-v_{k+1},\left(\mathrm{~S}_{3}\right)$ fails. Note that u must be upward with respect to \leqslant_{j}, but, since v_{k} is a UMPP for $F_{i}^{\prime}, u=v_{k+1}-v_{k}$ must be downward with respect to \leqslant_{i}. Hence $j>d$ and $u=u_{j}$ or else $i>d$ and $u=-u_{i}$. Suppose, first, that $u=u_{j}$ and $j>d$. The perturbation is therefore of type I* and

$$
\begin{equation*}
F_{j}^{\prime} \cap W^{\prime}=\left\{v_{k+1}, v_{k+2}\right\} \tag{4.2}
\end{equation*}
$$

It follows that $v_{k} \in F_{j} \cap F_{i}$. Since v_{k} is a pivot point of F_{i}^{\prime}, we have $v_{k+1} \leqslant i v_{k}$ and $v_{k-1} \leqslant i v_{k}$. Since $v_{k} \in F_{j}$ and $v_{k+1} \notin F_{j}$, we deduce that $v_{k-1} \in F_{j}$. If (S_{2}) held, then $v_{k-2}=v_{k+1}-v_{k}+v_{k-1} \in F_{j}^{\prime}$, contrary to (4.2). So (S_{2}) must fail in the case $u=u_{j}$. Now suppose that $u=-u_{i}$ and $i>d$. By (4.1), we have that $v_{k+3} \in F_{i}^{\prime}=F_{i}$, so (S_{2}) must fail in this case.

The rest of the proof of the theorem is easy. Pick the largest i such that p_{i}^{\prime} is a UMPP for F_{i}^{\prime} and one of $\left(\mathrm{S}_{1}\right),\left(\mathrm{S}_{2}\right)$, or $\left(\mathrm{S}_{3}\right)$ holds. By Lemmas 2 and 3 such an i exists and $i \geqslant j$, where the perturbation is on F_{j}. By Lemma 4, $p_{i}^{\prime} \notin W$. Then, by Lemma 3 the perturbation can be identified and all but the final edge of W can be recovered. That edge is then recovered via the association between that edge and the choice of perturbation in the construction of $W^{\prime \prime}$.

ACKNOWLEDGMENTS

I am indebted to N . Madras for introducing me to SAWs and providing me with much of the background material for this work, including in particular the argument in (1.5). This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

1. J. M. Hammersley and D. J. A. Welsh, Further results on the rate of convergence to the connective constant of the hypercubical lattice, Q. J. Math. Ser. 2 13:108-110 (1962).
2. H. Kesten, On the number of self-avoiding walks, J. Math. Phys. 4:960-969 (1963).
3. N. Madras and A. D. Sokal, The pivot algorithm: A highly efficient Monte Cario method for self-avoiding walks, J. Stat. Phys. 50:109-186 (1988).
4. G. Slade, The diffusion of self-avoiding random walk in high dimensions, Commun. Math. Phys. 110:661-683 (1987).
5. S. G. Whittington, Statistical mechanics of polymer solutions and polymer absorption, in Advances in Chemical Physics, Vol. 51 (Wiley, New York, 1982), pp. 1-48.

[^0]: ${ }^{1}$ Department of Mathematics, York University, North York, Ontario, Canada M3J 1P3.

